RWE4Decisions

ROUNDTABLE

Transforming Real-World Evidence with Al: From Data to Decisions

WEDNESDAY, 15 OCTOBER 2025 15:00-16:30 CEST

Co-Moderator

Karen Facey

Senior HTA Advisor, RWE4Decisions University of Edinburgh

RWE4Decisions

RWE4Decisions is an HTA/Payer-led multistakeholder learning network that fosters open dialogue about how to generate fit-for-purpose RWE throughout the lifecycle of highly innovative medicines to better inform HTA/Payer decisions and support the needs of healthcare systems.

RWE4Decisions 2025 Steering Group

HTA BODIES / PAYERS

Jo **De Cock INAMI-RIZIV**

Francis Arickx INAMI-RIZIV

Niklas Hedberg TLV

Piia Rannanheimo Fimea

Cláudia **Furtado INFARMED**

Christian Dehlendorff Danish Medicines Council

Shaun Rowark NICE

Karen Facey, PhD Lungu **CStat** CDA-AMC HonMFPH

FACILITATORS

François Mever, MD

Eric Sutherland **OECD**

INTERNATIONAL **ORGANISATION**

Chris Sotirelis Community

PATIENT REPRESENTATIVES

Julien Delaye **EURORDIS**

Hans-Georg **Eichler** Austrian Social Insurance Inst.

INSURER

Matti Aapro, MD Genolier Cancer Centre

CLINICIAN

Ashlev Jaksa **Aetion**

ANALYTICS EXPERT

Seamus Kent Rotterdam University

ACADEMIA

Entela Xoxi Uni. Cattolica Sacro Cuore

INDUSTRY

Webinar: Transforming Real-World Evidence with AI: From Data to Decisions

Co-Moderator

Niklas Hedberg
Chief pharmacist, TLV
Co-Chair, Member State
Coordination Group on
HTA

Julián Isla
Data and Al Resource
Manager, Microsoft

Panellists

Associate Director RWE
Methods, National
Institute for Health &
Care Excellence

Jing Wang-Silvanto
Senior Director, Global
Value Evidence,
Astellas

Farah Husein
Director Science and
Methods, Canada's
Drug Agency

RWE4Decisions

Transforming RWE with AI: From Data to Decisions

Agenda

Introductory reflections

- Niklas Hedberg (TLV)
- Julián Isla (Microsoft, Foundation29/EURORDIS)

Presentations

- Stephen Duffield (NICE)
- Jing Wang-Silvanto (Astellas)

Discussant

Farah Husein (CDA-AMC)

Moderated panel discussion | 15:45 CEST

Q&A session | 16:00 CEST

Meeting close | 16:30 CEST

Co-Moderator Introduction

Niklas Hedberg

Chief pharmacist, TLV
Co-Chair, Member State Coordination
Group on HTA

Julián Isla

Founder, Foundation 29
Data and Al Resource Manager, Microsoft
EURORDIS Member

Jing Wang-Silvanto

Senior Director, Global Value Evidence, Astellas

AI in RWE

- pharmaceutical industry perspective

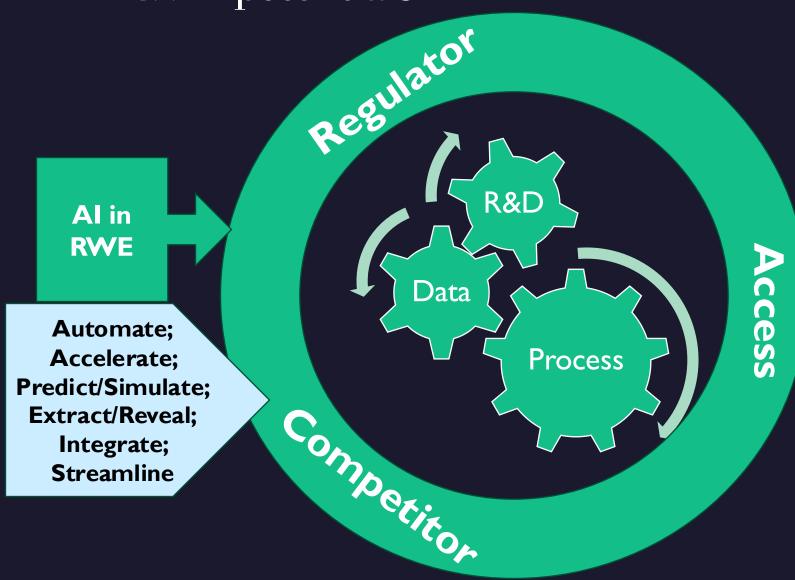
Jing Wang-Silvanto

Astellas Pharmaceutical Ltd

RWE4Decisions: Transforming Real-World Evidence with AI: From Data to Decisions

Oct 2025

Disclaimer

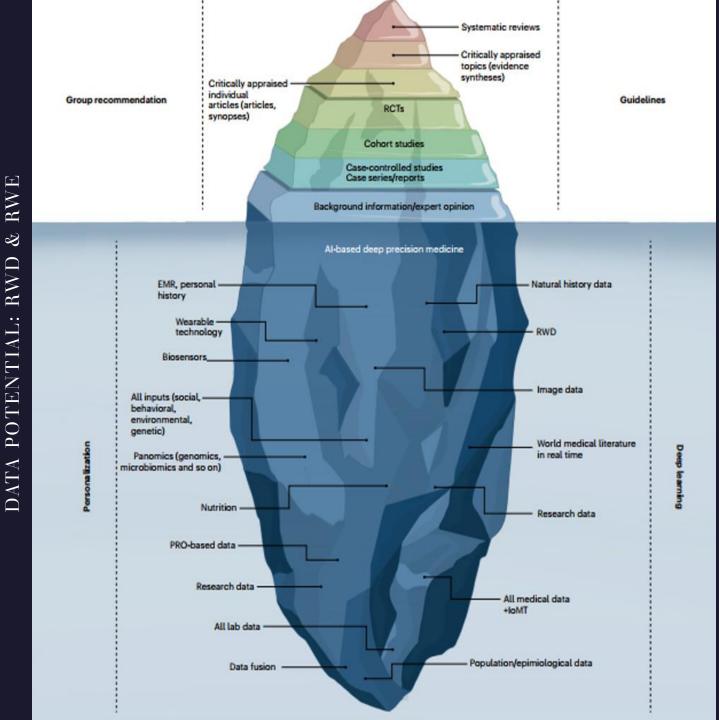

- The speaker is a paid employee of Astellas.
- This presentation is intended for informational purposes only and does not replace independent professional judgment.
- This presentation is not intended to provide medical or legal advice.
- Statements of fact, positions taken and opinions expressed are those of the speaker individually and, unless expressly stated to the contrary, do not necessarily reflect the opinion or position of the speaker's employer, Astellas, or any of its subsidiaries and/or related entities

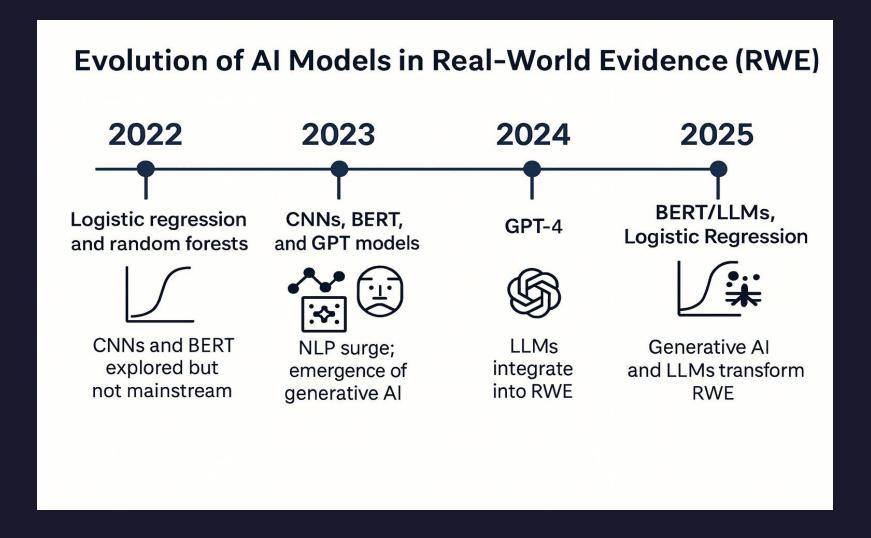
Agenda

- I. Intro: AI in RWE since 2022; why it is important for industry
- 2. Current situation: AI in RWE applications and impact in pharmaceutical industry
- 3. Challenges and root causes
- 4. Potential solutions and immediate next steps
- 5. Summary: take-away

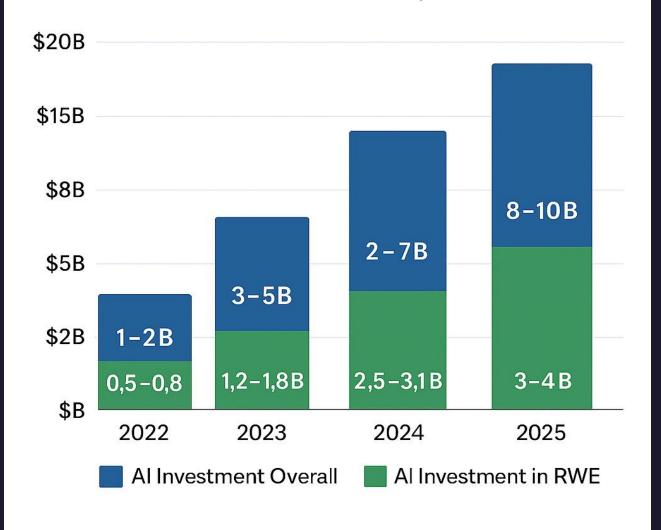
Industry & Healthcare Ecosystem challenges & 'AI in RWE' potentials

Faster approval,
Improved access and
outcomes; Better
decision-making;
Lower costs




Opportunities – AI, Data (RWD)

	Areas	Non-Al present	Al future	
Efficiency	Time	Long	Shorter	
	Cost	High	Lower	
	Process	Repetitive	Automated	
	Data	Siloed	Integrated	
Quality	Data quality	Inconsistent	Standardised	
	Precision	Average	Personalised	
	Prediction	Low confidence	High confidence	
	Accuracy	Error prone	More accurate	
	Insights	Hidden	Reveal new	
	Depth	Shallow	Deeper	
	Breadth	Narrow	Broader	


Image (right): adapted from Subbiah (2023) The next generation of evidence-based medicine.

Opportunities – AI in RWE evolved rapidly since 2022

Pharma Al Investment, 2022-2025

Investment: AI and AI for RWE

To grasp this opportunity of AI and AI for RWE, pharma investment level has been going up.

AI Applications in RWE

Clinical Trial Design & Planning

- Faster enrolment & diversity
- Al cuts trial planning time by ~68%1

Clinical Trial Execution

- Efficiency gains
- Al monitoring reduced workload by 75%

Synthetic Data Generation

- Privacy-protecting RWE
- Al enabled single-arm study designs 2

Regulatory Submission

- Faster submission
- AI/ML reduced prep time by 63% |

Post-Marketing Safety

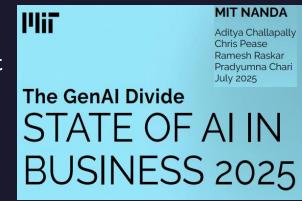
- Better detection
- Al improved adverse reaction detection by 24% ³

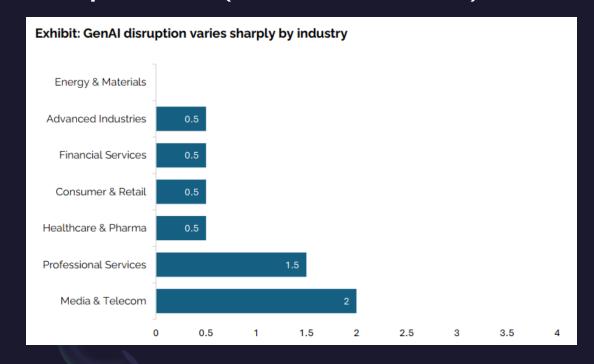
Real-World Data Curation

- Unlocks 'dark data'
- LLMs identified new patient cohorts 4

Evidence Synthesis

- Time & cost savings
- Al cut review time by 50% ⁵


HEOR


- Improved insights of clinical and economic value
- Al found 20% lower hospitalization subgroup 6
- 1. Getz (2025) New insights on the impact of Al-enabled solutions. Applied Clin Trials. 2025;34(3);
- 2. Studna (2025) Leveraging artificial intelligence alongside RWE/RWD:
- 3. Algarvio et al (2025) Artificial intelligence in pharmacovigilance: a narrative review and practical experience with an expert-defined Bayesian network tool. Int J Clin Pharm. 2025;47(7)
- 4. Peltner et al. (2025) The EU project Real4Reg: unlocking real-world data with Al. Health Res Policy Syst. 2025;23(1)
- 5. Wang-Silvanto et al (2025) An Artificial Intelligence (AI)-Assisted Systematic Literature Review (SLR) of the Economic Burden in Metastatic Pancreatic Adenocarcinoma: A Proof-of-Concept Study.
- 6. Truelove (2025) Al backs up RWE. Med Ad News/PharmaLive

Return On Investment (ROI)

MIT report on AI in July 2025 suggests that Adoption without Transformation: 'Despite \$30–40 billion in enterprise investment into GenAI, this report uncovers a surprising result in that <u>95% of organizations</u> are getting <u>zero return</u>*'

In order to achieve a more substantial ROI, industry needs to move up the 'Adoption scale' (from level I to level 4) to 'Transformation'.

Exhibit: Description of GenAl disruption				
Industry	Key Signals			
Technology	New challengers gaining ground (e.g., Cursor vs Copilot); shifts in workflows			
Media & Telecom	Rise of AI-native content; shifting ad dynamics; incumbents still growing			
Professional Services	Efficiency gains; client delivery remains largely unchanged			
Healthcare & Pharma	Documentation/transcription pilots; clinical models unchanged			
Consumer & Retail	Support automation; limited impact on loyalty or leaders			
Financial Services	Backend automation; customer relationships stable			
Advanced Industries	Maintenance pilots; no major supply chain shifts			
Energy & Materials	Near-zero adoption; minimal experimentation			

*Return defined as 'measurable, marked and sustained productivity impact or P&L impact'

Image: Challapally et al (2025) The GenAl Divide: state of Al in business 2025

Measuring returns by adoption levels – From Emerging (piloting) to Transformation (scaled)

Category	Level I – Emerging	Level 2 – Moderate	Level 3 – Advanced	Level 4 – Leading/Scaled
W orkflow embedment	Scattered pilotsMostly exploratory	Data foundation programs underway	 Al embedded across RWE functions 	Al at scale across RWE pipeline
Governance, validation & acceptance	No enterprise-wide data governanceNo standardized validation	 Internal governance body established 	 Transparent validation frameworks 	 Regulators accept Al- derived evidence
Workforce & skillset	 Skills limited to a few specialists 	 Initial workforce training rolled out 	 Multi-functional Al centers of excellence 	 Continuous learning system with live RWE feeds
Decision making & impact	No/limited impactExternal AI experts engaged	 Pilot regulatory/scientific engagement 	 Active collaborations with regulators & consortia 	 Demonstrated impact on development & outcomes

AI in RWE - adoption levels

Relatively higher adoption levels in areas where: clear data processing (data heavy, time-intensive) benefits and lower immediate risks (well-defined processes):

- Clinical trial design and planning
- Data cleaning and quality control
- Literature reviews and evidence synthesis
 - Regulatory submissions support

Relatively lower adoption levels in areas where: the outputs of Al bear higher risks (e.g. patient safety) and greater uncertainty and thus require greater trust:

- Health economics modeling
 - Regulatory strategy
- Clinical decision-making support
- Pharmacovigilance and post-marketing monitoring

Challenges & root causes

- Data quality and accessibility barrier
- Lack of trust and transparency of Al outputs
- Organizational skills and change management issues
- Managing expectations (Hype vs. Reality) challenge
- Regulatory and compliance uncertainty

Potential Solutions & Focus Areas (1)

Action: Robust data infrastructure & diverse sources
Benefit: High-quality, reliable data → stronger AI outputs

Transparency & Validation

Action: Explainable Al & rigorous validation

Benefit: Builds trust & supports regulatory acceptance

Risk-Based Governance

Action: Cross-functional oversight & phased rollout Benefit: Ensures compliance + safe scaling of Al use cases

Potential Solutions & Focus Areas (2)

Strengthen Skills & Change Management

Action: Upskill teams, foster innovation culture, Al translator roles

Benefit: Boosts collaboration & adoption

Demonstrate Value & Communicate Success

Action: Pilot projects, track success metrics, share wins & failures

Benefit: Builds momentum & stakeholder confidence

Engage Regulators & Stakeholders

Action: Early regulator engagement, cross-industry collaboration, transparency with

patients

Benefit: Smooths pathway & builds trust

Potential solutions and Immediate actions

- Strengthen data foundations;
- Build transparency and validation for Al;
- Enhance internal governance, capability of hybrid experts (understand business areas and AI), leadership drive for change management in AI;
- Early engagement and collaboration with decision makers such as regulatory bodies, HTA & payers, HCPs, patients;
- Manage expectations, celebrate early successes, learn, feedback, and upscale quickly

Summary

- Pharma industry needs act faster and more strategic investment to scale Al applications in RWE to maximise the ROI of Al and to address key challenges within pharma; and in turn benefit the healthcare ecosystem;
- Current situation with Al is more at emerging pilot level than measurable impacts on P&L and productivity at scale
- Key barriers to such adoption pattern are: I) data;
 2) trust; 3) workforce skillsets; 4) acceptability by decision makers; 5) expectations

Stephen Duffield

Associate Director RWE Methods

National Institute for Health and Care Excellence (NICE)

NICE's position statement: Using AI in evidence generation for RWE

Dr Stephen Duffield
Healthcare Data & Analytics

RWE4Decisions 08/10/25

NICE National Institute for Health and Care Excellence

Al across the evidence generation pipeline

Data generation

Clinical study design

Analysis

Evidence synthesis

- NLP for clinical notes
- Synthetic data
- Data augmentation
- Simulation
- Automated curation

- Population identification, recruitment, and retention.
- Protocol optimisation
- Real time data collection and monitoring

- ML-enhanced causal inference
- Data fusion approaches
- Biomarker and subgroup discovery
- Federated learning

- Search
- Abstract and full text screening
- Data extraction
- Risk of bias assessment
- Economic model design and adaptation

Decision making

- Reasoning
- Informing
- Prioritisation
- Summarisation
- Report writing

NICE

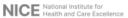
Artificial intelligence has arrived at NICE

LASSO in Carfilzomib for previously treated multiple myeloma (TA657)

 Used for confounding adjustment as it reduces influence of large coefficients with large confidence intervals on treatment effect.

Prediction models for imaging and scan data

- Al for autocontouring (HTE11)
- Al for clinical decision making in stroke (DG57)
- Al for chest X-rays for suspected lung cancer (HTE12)
- CaRi-Heart for predicting cardiac risk in CAD (HTE4)
- Zio XT for detecting Cardiac arrythmias (MTG52)
- KardiaMobile for atrial fibrillation (MTG64).


Training of ML classifiers for systematic review

 Daily surveillance searches were run to identify relevant literature during the COVID-19 pandemic.

NICE's Statement of Intent for Al

- Use of digital technology to create systems capable of performing tasks commonly thought to require human intelligence (including ML)
- Signals our approach to:
 - adopt an agile approach to a fast-moving field,
 - safely balance opportunities and risks
 - adhere to best practice and government standards, and
 - maintain our core <u>principles</u> that underpin NICE's work.
- Underscores the need to collaborate with key experts and stakeholders to develop evidence requirements and pilot new tools
- Published on a dedicated AI-space on NICE's website

NICE

Statement of Intent for Artificial Intelligence at NICE

Purpose of this document

This document sets out our intention to develop our approach to: the evaluation of artificial intelligence (AI)-based technologies for use in the NHS; the use of AI by developers to support the generation of evidence for their technologies; and the possible incorporation of AI-based tools in our own internal processes.

All encompasses the use of digital technology to create systems capable of performing tasks commonly thought to require human intelligence and includes machine learning approaches.

Given the rapid and dynamic pace of Al advancements, this document is not intended to present a strategy or a rigid workplan but rather a flexible framework for methods development.

We will take an adaptive approach to reflect technological advances, emerging needs, the work of system partners, and stakeholder feedback.

Background

NICE produces useful and useable guidance for the NHS and wider health and care system. Our recommendations help practitioners and commissioners get the best care to people, fast, while ensuring value for the taxpayer. We do this by:

- providing rigorous, independent assessment of complex evidence for new health technologies.
- · developing recommendations that focus on what matters most, while
- encouraging the uptake of best practice to improve outcomes for everyone.

We recognise the transformative potential of AI to support the generation and reporting of evidence in our diverse range of programmes including health technology assessment (HTA) and guidelines. Beyond uses in evidence generation. AI-based technologies also offer promise to help address some of the most pressing challenges faced by the NHS, including waiting times and workforce shortages postpandemic. However, system partners need a clear signal from NICE regarding the

Statement of Intent for Artificial Intelligence at NICE

Page 1 of 6

Sol: The 3 priority areas for Al at NICE

Guidance

Evaluation

Use

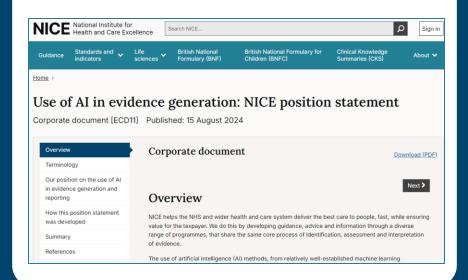
for technology developers on best practice for Al-based methods to support evidence generation of technologies
incorporating AI, e.g.,
certain clinical prediction
models or digital health
technologies

of AI to support and improve the efficiency of NICE's internal business processes

NICE's position statement on AI in evidence submissions

Why a position statement?

- NICE sets out its view on what NICE expects when AI methods are used to generate and report evidence considered by its evaluation programmes.
- Indicate existing regulations, good practices, standards and guidelines to follow when using AI methods, where appropriate.


Provides more information and guidance about use of AI methods for:

- Systematic review and evidence synthesis
- Clinical evidence, including real-world data and analysis
- Cost-effectiveness evidence.

NICE

Read NICE's position statement:

Al for real-world evidence

Data generation and processing

- NLP approaches to generate structured data from unstructured real-world data
- multimodal data integration, automation of data matching and linkage, deduplication, standardisation, data cleaning and quality improvement processes.
- Synthetic data generation

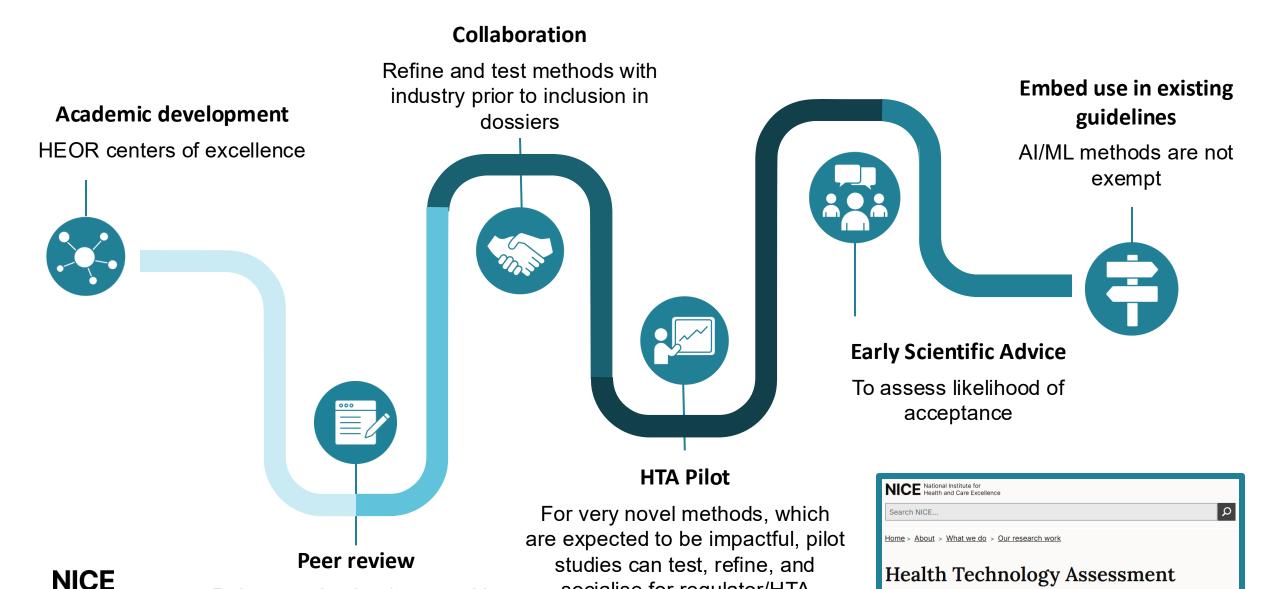
Other uses

- efficient selection of relevant populations and observations from large datasets
- estimation of comparative treatment effects (causal inference):
 - feature selection
 - more 'targeted' estimates.
- Approaches to combine RCT and RWE findings

Al: general principles for use

- The submitting organisation remains accountable for the content included in any submission.
 Clearly declare use of AI, justify use, explain choice of method and report how it was used, including human input. Consider how AI methods can be accessibly presented.
- Balance potential benefits against potential risks and only use when there is demonstrable value from doing so. Present steps taken against these risks.
- Any use of AI methods should be based on the principle of augmentation, not replacement, of human involvement.
- Submitting organisations should **conduct careful technical and external validation** when AI methods are used, and **present the results alongside submissions**.
- Risks should be mitigated by **adhering to established guidance and checklists** particularly highlighted by NICE (such as RAISE, VALID).
- Seek early advice and discuss with technical teams in later stages.

NICE


Use of AI in causal inference/RWE

- Estimating treatment effects
 - Justify use, outline assumptions, and consider plausibility of results. For example, use the PALISADE checklist.
 - Use <u>explainable and common methods in the first instance</u> where potentially robust, with supplementary use of less transparent approaches.
 - Use should be accompanied by considered sensitivity analysis, checked against other suitable methods, and 'triangulated' against available clinical evidence
- Ideally, use of ML methods should be accompanied by <u>pre-specified outcome-blind simulations</u>, conducted independently, demonstrating statistical properties in similar settings (for example, data types or populations) and correct implementation.
- All methods used for real-world data extraction and curation must be reported, in detail, as part of the data suitability assessment (see new update: RWE framework).

Roadmap to multi-stakeholder buy in (methods)

socialise for regulator/HTA

Innovation Laboratory (HTA Lab)

Robust evaluation in reputable

iournal

NICE's RWE framework update: algorithmic data gen.

Reporting:

- Clear definition of the extracted variable (explicitly detail semantic and syntactic context considered,
 e.g., negation and temporal aspects)
- Skillset of chart reviewers or annotators, extraction schema, annotation criteria, method for resolving disagreements, inter-rater agreement, information available to annotators vs software.
- Where algorithmic methods used: type of model, source version and owner. For LLMs: architecture,
 configuration, fine tuning, prompting strategy

Performance and reliability studies:

- Evaluation of performance: e.g. precision, recall, F1 score, ICC
- Training and test set and sample size, differences in characteristics between training, test data and dataset in which the algorithm was applied.
- Assessment of performance in subpopulations
- Assessment of model errors on intended analytical use cases

Update to DataSAT tool

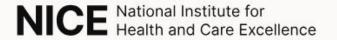
Vincet frameworks: VALID framework, Estevez et al. 2020, Wang et al. 2019.

NICE National Institute for Health and Care Excellence NICE real-world evidence framework Published: 23 June 2022 www.nice.org.uk/corporate/ecd9

Ongoing related work...

NICE HTA lab on use of AI in Health Economic modelling

Pilot study looking at the use of NLP methods for data generation


GREG consortium: Testing, and co-creating Guidance for RWE Generation and Decision-Making in Europe

Exploring the use of large language models for SLR

Pilot study considering evidence standards for AL/ML use for causal inference

SYNTHIA consortium on the potential uses for synthetic data in regulatory settings

Search NICE...

Sign in

Guidance

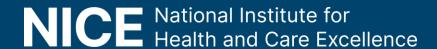
Standards and indicators

Life sciences

British National Formulary (BNF) British National Formulary for Children (BNFC)

Clinical Knowledge Summaries (CKS)

About ~


Home > About > What we do > Digital health

Artificial intelligence (AI) at NICE

We understand the importance of responsible and effective use of artificial intelligence (AI).

We're identifying the potential benefits that AI can bring to the health and care system, and how it can be used in the development of our guidance and advice.

Thank you

Stay up to date

- Sign up to our newsletters scan the QR code or visit <u>nice.org.uk/newsletters</u>
- Follow us on social media visit <u>link.tr.ee/nicecomms</u>

Farah Husein

Director Science and Methods, Canada's Drug Agency (CDA-AMC)

PANEL DISCUSSION

Stephen Duffield
Associate Director
RWE Methods, NICE

Jing Wang-Silvanto
Senior Director, Global
Value Evidence, Astellas

Julián IslaData and Al Resource

Manager, Microsoft

Farah Husein
Director Science and
Methods, CDA-AMC

Co-moderated by:

Niklas Hedberg
Chief Pharmacist, TLV
Co-Chair of the HTA CG

Karen Facey
Special Advisor HTA,
RWE4Decisions Secretariat

Thank you!

www.rwe4decisions.com

Follow us on LinkedIn @RWE4Decisions

Save the date for our next RWE4Decisions event:

Online Symposium - "Mobilising Real-World Data to Enhance HTA/Payer Decision-Making", 20 November 2025 (14:00-17:00 CET)

Get in touch at <u>secretariat@rwe4decisions.com</u> if you are interested in receiving an invitation.

